Jacobians over \mathbb{C}

Benjamin Smith

Team GRACE
INRIA Saclay-Île-de-France

Laboratoire d'Informatique de l'École polytechnique (LIX)

GT-VACHES, February 23, 2015

What follows is a very quick jog through half of Mumford's "Curves and their Jacobians", Chapter III.

Mumford begins:
I would like to being by introducing Jacobians in the way that they were discovered historically. Unfortunately, my knowledge of 19th-century literature is very scant so this should not be taken literally.

In my case, I need to add a further disclaimer:
Never mind the 19th century, I have a hard enough time with my own century already... So none of this should be taken literally. Or seriously, for that matter.

Integration on \mathcal{C}

Historically: long-dead folks studied algebraic integrals $I=\int f(x) d x$, where $F(x, y=f(x))=0$.

So let's look at integrals of rational differentials on an algebraic curve \mathcal{C} :

$$
I(a)=\int_{a_{0}}^{a} \omega \quad \text { where } \quad \omega=\frac{P(x, y)}{Q(x, y)} d x
$$

with P, Q polynomials, a, a_{0} in $\mathcal{C}: F(x, y)=0$.

Abel's theorem

The main result is an addition theorem:
Let ω be a differential on \mathcal{C}. There exists an integer g such that if

- a_{0} is a base point and
- a_{1}, \ldots, a_{g+1} are any points on $\mathcal{C} \backslash\{$ poles of $\omega\}$,
- then we can determine $\left\{b_{1}, \ldots, b_{g}\right\} \subset \mathcal{C} \backslash\{$ poles of $\omega\}$ rationally in terms of the a_{i} such that

$$
\int_{a_{0}}^{a_{1}} \omega+\cdots+\int_{a_{0}}^{a_{g+1}} \omega=\int_{a_{0}}^{b_{1}} \omega+\cdots+\int_{a_{0}}^{b_{g}} \omega \quad(\bmod \text { periods of } \omega) .
$$

Iterating, we get something that looks like a group law:

$$
\left(\sum_{i=1}^{g} \int_{a_{0}}^{a_{i}} \omega\right)+\left(\sum_{i=1}^{g} \int_{a_{0}}^{b_{i}} \omega\right)=\left(\sum_{i=1}^{g} \int_{a_{0}}^{c_{i}} \omega\right) \quad(\bmod \text { periods of } \omega),
$$

where the c_{i} can be expressed in terms of the a_{i} and b_{i}.

Mumford's rephrasing of Abel's theorem

If ω is any rational differential on \mathcal{C}, then the multi-valued function

$$
a \longmapsto \int_{a_{0}}^{a} \omega
$$

from \mathcal{C} to \mathbb{C} factors into a composition of three maps

$$
\mathcal{C} \backslash\{\text { poles of } \omega\} \xrightarrow{\phi} J \stackrel{\exp }{\longleftarrow} \operatorname{Lie}(J) \cong T_{0}(J) \xrightarrow{\ell} \mathbb{C},
$$

where

- J is a commutative algebraic group,
- ℓ is linear, and
- ϕ is a morphism. Further: if $g=\operatorname{dim} J$, then extending to the g-fold symmetric product using the addition law on J,

$$
\phi^{(g)}:(\mathcal{C} \backslash\{\text { poles of } \omega\})^{(g)} \longrightarrow J \text { is birational . }
$$

Differentials on \mathcal{C} and on $\mathcal{J}_{\mathcal{C}}$

"A slightly less fancy way to put it":
For each differential ω on \mathcal{C} there is

- a $\phi: \mathcal{C} \backslash\{$ poles of $\omega\} \rightarrow J$, and
- a translation-invariant differential η on J such that $\phi^{*} \eta=\omega$.

Hence

$$
\int_{\phi\left(a_{0}\right)}^{\phi(a)} \eta=\int_{a_{0}}^{a} \omega \quad \text { (mod periods) } .
$$

Regular differentials

Now, we restrict all of this to regular differentials (no poles: "differentials of the first kind")...

If \mathcal{C} / \mathbb{C} is a nonsingular plane curve of genus g defined by

$$
\mathcal{C}: F(x, y)=0
$$

then its regular differentials are

$$
\Omega^{1}(\mathcal{C})=\left\langle\frac{x^{i}}{F_{y}(x, y)} d x\right\rangle_{i=0}^{g-1} \quad \text { where } \quad F_{y}:=\partial F / \partial y
$$

Ex: $\mathcal{C}: y^{2}=x^{3}+a x+b$ has $g=1$ and $\Omega^{1}(\mathcal{C})=\langle d x / y\rangle$.

The Jacobian

"Among the ω s, the most important are those of the 1st kind, i.e., without poles, and if we integrate all of them at once, we are led to the most important J of all: the Jacobian, which we call $\mathcal{J}_{\mathcal{C}}$."

$$
\mathcal{C} \stackrel{\phi}{\longrightarrow} \mathcal{J}_{\mathcal{C}} \stackrel{\exp }{\leftrightarrows} \operatorname{Lie}\left(\mathcal{J}_{\mathcal{C}}\right) \xrightarrow{\ell} \mathbb{C},
$$

We find that

- $\mathcal{J}_{\mathcal{C}}$ must be a compact commutative algebraic group $\Longrightarrow \mathcal{J}_{\mathcal{C}}$ is a complex torus
- We have an isomorphism
$\phi^{*}:\left\{\right.$ translation-invariant 1-forms on $\left.\mathcal{J}_{\mathcal{C}}\right\} \rightarrow \Omega^{1}(\mathcal{C})$
- $\Longrightarrow \operatorname{dim} \mathcal{J}_{\mathcal{C}}=\operatorname{dim} \Omega^{1}(\mathcal{C})=g(\mathcal{C})$.

$\mathcal{J}_{\mathcal{C}}$ as a complex torus

We can write

$$
\mathcal{J}_{\mathcal{C}}=V / L
$$

where

- $V=$ dual of $\Omega^{1}(\mathcal{C})$ (a complex vector space)
- $L=\left\{\ell \in V: \ell(\omega)=\int_{\gamma} \omega\right.$ for some 1-cycle γ on $\left.\mathcal{C}\right\}$ (ie, the lattice of $\ell \in V$ that come from periods)
\ldots And then the map $\phi: \mathcal{C} \rightarrow \mathcal{J}_{\mathcal{C}}$ is

$$
\phi(a)=\int_{a_{0}}^{a} \omega(\bmod L)
$$

(where we can fix a path from a_{0} to a.)
Since $\mathcal{J}_{\mathcal{C}}$ is a group: $V^{*} \cong\left\{\right.$ trans-inv. 1-forms on $\left.\mathcal{J}_{\mathcal{C}}\right\} \cong$ $\left\{\right.$ cotangent space to $\mathcal{J}_{\mathcal{C}}$ at any $\left.a \in \mathcal{J}_{\mathcal{C}}\right\} \cong \Omega^{1}(\mathcal{C})$.

Algebraic construction of $\mathcal{J}_{\mathcal{C}}$

We can also construct $\mathcal{J}_{\mathcal{C}}$ algebraically.
The Riemann-Roch theorem tells us that

$$
I(D)-I\left(K_{\mathcal{C}}-D\right)=\operatorname{deg}(D)-g+1
$$

so we have a partial group law

$$
\mathcal{C}^{(g)} \times \mathcal{C}^{(g)} \supset U_{1} \times U_{2} \rightarrow U_{3} \subset \mathcal{C}^{(g)} \quad \text { with the } U_{i} \text { Zariski-open . }
$$

Weil showed that this can be extended into an algebraic group J with $J \supset U_{4} \subset \mathcal{C}^{(g)}$ for some Zariski-open U_{4}.
(Remember, $C^{(g)}$ is birational to $\mathcal{J}_{\mathcal{C}}$.)

The Jacobian as the Albanese and Picard variety

The Jacobian $\mathcal{J}_{\mathcal{C}}$ is the Albanese variety of \mathcal{C} : that is, if A is an abelian variety, then any morphism $\psi: \mathcal{C} \rightarrow A$ factors through $\mathcal{J}_{\mathcal{C}}$.

$$
\mathcal{C} \longrightarrow \mathcal{J}_{\mathcal{C}} \longrightarrow A
$$

The Jacobian is also isomorphic to the Picard variety $\operatorname{Pic}^{0}(\mathcal{C})$ of \mathcal{C} via the Abel-Jacobi theorem.
(Note: $\operatorname{Pic}^{0}(\mathcal{X})$ is the dual of $\operatorname{Alb}(\mathcal{X})$.)

Abel-Jacobi

Given x_{1}, \ldots, x_{k} and y_{1}, \ldots, y_{k} in \mathcal{C},
$\sum_{i=1}^{k} \phi\left(x_{i}\right)=\sum_{i=1}^{k} \phi\left(y_{i}\right) \Longleftrightarrow \sum_{i=1}^{k} x_{i}-\sum_{i=1}^{k} y_{i}=(f)$ for some $f \in \mathbb{C}(\mathcal{C})$.
Consider the map $\phi^{(k)}: \mathcal{C}^{(k)} \rightarrow \mathcal{J}_{\mathcal{C}}$; we define subvarieties

$$
W_{k}:=\operatorname{Image}\left(\phi^{(k)}\right) \subseteq \mathcal{J}_{\mathcal{C}} \quad \text { for } k \geq 1
$$

(so $W_{k}=\mathcal{J}_{\mathcal{C}}$ if $k \geq g(\mathcal{C})$).
The most important of these is the Theta divisor

$$
W_{g-1}=: \Theta
$$

Θ is ample; the functions in $L(n \Theta)$ map $\mathcal{J}_{\mathcal{C}}$ into $\mathbb{P}^{n^{g}-1}$.

Fibres of $\phi^{(k)}$

Abel's theorem \Longrightarrow the fibres of $\phi^{(k)}$ are linear systems of degree k, hence \cong projective spaces:

- Pick a degree-k effective divisor $D \in \mathcal{C}^{(k)}$.
- Riemann-Roch space $L(D):=\{f \in \mathbb{C}(\mathcal{C}):(f)+D \geq 0\}$.
- $|D|:=\{(f)+D: f \in L(D)\}=\left(\phi^{(k)}\right)^{-1}\left(\phi^{(k)}(D)\right) \cong \mathbb{P}(L(D))$
is the linear system of effective divisors linearly equivalent to D
Hence: if $x=\phi^{(k)}(D)$, then $\left(\phi^{(k)}\right)^{-1}(x)=|D| \cong \mathbb{P}(L(D))$.
Riemann-Roch $\Longrightarrow \operatorname{dim}|D|=k-g+\operatorname{dim} \Omega^{1}(-D)$
where $\Omega^{1}(-D)=$ space of ω in $\Omega^{1}(\mathcal{C})$ with zeroes on D.
Consequence:
- $\phi^{(1)}(\mathcal{C})=\mathrm{pt} \Longleftrightarrow g(\mathcal{C})=0 \Longleftrightarrow \mathcal{C} \cong \mathbb{P}^{1}$
- $\phi^{(1)}$ is an embedding $\mathcal{C} \xrightarrow{\sim} W_{1} \subseteq \mathcal{J}_{\mathcal{C}} \Longleftrightarrow g(\mathcal{C}) \geq 1$.

Genus 0

If \mathcal{C} has genus zero, then $\Omega^{1}(\mathcal{C})=0$, so

$$
\mathcal{J}_{\mathcal{C}}=0
$$

...which fits with Riemann-Roch: $\mathcal{J}_{\mathcal{C}} \cong \operatorname{Pic}^{0}(\mathcal{C})=0$.
Since $\mathcal{J}_{\mathcal{C}}=\operatorname{Alb}(\mathcal{C})=0$, we find that for any curve \mathcal{X},

- The only linear subvarieties of $\mathcal{J}_{\mathcal{X}}$ are points (lines L mapping into $\mathcal{J} \mathcal{X}$ map through $\operatorname{Alb}(L)=0$).
- More generally, there are no rational curves in any $\mathcal{J} \mathcal{X}$.

Genus 1

If \mathcal{C} has genus one, then $\phi: \mathcal{C} \rightarrow \mathcal{J}_{\mathcal{C}}$ is an embedding, hence

$$
\mathcal{J}_{\mathcal{C}} \cong \mathcal{C} .
$$

(The isomorphism depends on ϕ, ie on the choice of base point a_{0}.)
In terms of the Picard group: the isomorphism $\mathcal{C} \rightarrow \mathcal{J}_{\mathcal{C}} \cong \operatorname{Pic}^{0}(\mathcal{C})$ is defined by $a \mapsto\left[a-a_{0}\right]$, and $\left[a-a_{0}\right]+\left[b-b_{0}\right]=\left[(a \oplus b)-a_{0}\right]$.
$\int_{a_{0}}^{a} d x / y+\int_{a_{0}}^{b} d x / y=\int_{a_{0}}^{a} d x / y+\int_{a_{0} \oplus a}^{b \oplus a} d x / y=\int_{a_{0}}^{a \oplus b} d x / y \quad$ (mod periods)
In this case, $\Theta=W_{0}=a_{0}$ (so a_{0} "is" the principal polarization).
Indeed, $|3 \Theta|$ defines a projective embedding of $\mathcal{J}_{\mathcal{C}}$ into \mathbb{P}^{2}.

Genus 2

Let \mathcal{C} be a curve of genus 2 , and consider

$$
\phi^{(2)}: \mathcal{C}^{(2)} \longrightarrow \mathcal{J}_{\mathcal{C}}
$$

The preimage of each point of $\mathcal{J}_{\mathcal{C}}$ is either a point or a line.
$\mathcal{C}: y^{2}=f(x)$ has a hyperelliptic $\pi: \mathcal{C} \xrightarrow{2} \mathbb{P}^{1}$ mapping $(x, y) \mapsto x$. All points of \mathbb{P}^{1} are linearly equivalent \Longrightarrow all of the $\pi^{-1}(x)$ are linearly equivalent, so we get a copy of \mathbb{P}^{1} in $\mathcal{C}^{(2)}$:

$$
E=\left\{(x, y)+(x,-y): x \in \mathbb{P}^{1}\right\} \subset \mathcal{C}^{(2)}
$$

Result: $\mathcal{J}_{\mathcal{C}}$ is obtained from $\mathcal{C}^{(2)}$ by "blowing down" the divisor $E \cong \mathbb{P}^{1}$ to a single point.

In this case: $\Theta=\phi(\mathcal{C})$ is a copy of \mathcal{C} inside $\mathcal{J}_{\mathcal{C}}$.

Genus 3

Let \mathcal{C} be a curve of genus 3 .
First, consider $k=3$:

$$
\phi^{(3)}: \mathcal{C}^{(3)} \rightarrow \mathcal{J}_{\mathcal{C}}
$$

Fix x in \mathcal{C}; the $\omega \in \Omega^{1}(\mathcal{C})$ zero at x form a 2-dimensional space. These ω have 3 other zeroes \rightarrow determine degree-3 effective divisors, and these effective divisors are linearly equivalent (via $f=\omega_{1} / \omega_{2}$), and hence form a linear system:

$$
\text { each } x \in \mathcal{C} \longleftrightarrow \text { a copy } E_{x} \text { of } \mathbb{P}^{1} \text { in } \mathcal{C}^{(3)}
$$

Now we get $\mathcal{J}_{\mathcal{C}}$ from $\mathcal{C}^{(3)}$ by blowing down each E_{x} to a point.
On the other hand: if $\gamma=\left\{\phi^{(3)}\left(E_{x}\right): x \in \mathcal{C}\right\} \subset \mathcal{J}_{\mathcal{C}}$, then $\gamma \cong \mathcal{C}$, and $\mathcal{C}^{(3)}=\mathcal{J}_{\mathcal{C}}$ blown up along γ.

Genus 3, continued

Next, consider $k=2$ (still with $g(\mathcal{C})=3$):

$$
\phi^{(2)}: \mathcal{C}^{(2)} \rightarrow W_{2} \subset \mathcal{J}_{\mathcal{C}}
$$

If \mathcal{C} is nonhyperelliptic then there are no nontrivial degree-2 linear systems, so no preimages under $\phi^{(2)}$ of dimension >0, so

$$
W_{2} \cong \mathcal{C}^{(2)}
$$

If \mathcal{C} is hyperelliptic: one degree- 2 linear system E (from the hyperelliptic $C \rightarrow \mathbb{P}^{1}$, like in $g=2$), and so

$$
\Theta=W_{2} \cong \mathcal{C}^{2} \text { with } E \text { blown down to a point }
$$

The image $e=\phi^{(2)}(E)$ of E in W_{2} is a double point.

Genus 4 : Hyperelliptic case

Let \mathcal{C} be a curve of genus 4 .
First, if \mathcal{C} is hyperelliptic:
\exists a degree-2 linear system E from the hyperelliptic $\pi: \mathcal{C} \xrightarrow{2} \mathbb{P}^{1}$. Hence for each $x \in \mathcal{C}$ we have a degree-3 linear system

$$
\mathbb{P}^{1} \cong E_{x}=E+x \subset \mathcal{C}^{3}
$$

—ie $\mathcal{C}^{(3)}$ contains a whole curve of \mathbb{P}^{1} s.
Let S be the surface $\cup_{x \in \mathcal{C}} E_{x} \subset \mathcal{C}^{(3)}$. Then we have

$$
\Theta=W_{3} \cong \mathcal{C}^{(3)} \text { with } S \text { blown down to a curve } \gamma \cong \mathcal{C},
$$ and γ is a double curve of W_{3}.

Genus 4 : Nonhyperelliptic general case

Suppose \mathcal{C} is nonhyperelliptic of genus 4 .
Then \mathcal{C} is the intersection of a quadric F and a cubic G in \mathbb{P}^{3}.
General case: $F \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.
\Longrightarrow two projections $\pi_{i}: \mathcal{C} \rightarrow \mathbb{P}^{1}$ of degree 3
\Longrightarrow two linear systems $E_{1}, E_{2} \subset \mathcal{C}^{(3)}$, with $E_{1} \cong E_{2} \cong \mathbb{P}^{1}$.
Here:

$$
\Theta=W_{3} \cong \mathcal{C}^{(3)} \text { with } E_{1}, E_{2} \text { blown down to points } e_{1}, e_{2}
$$

and e_{1} and e_{2} are ordinary double points of W_{3}.

Genus 4 : Nonhyperelliptic general case

Suppose \mathcal{C} is nonhyperelliptic of genus 4 .
Then \mathcal{C} is the intersection of a quadric F and a cubic G in \mathbb{P}^{3}.
Special case: F is a singular quadric. Then the two degree-3 maps $\mathcal{C} \rightarrow \mathbb{P}^{1}$ coincide, so there is only one nontrivial degree-3 linear system, E :

$$
\Theta=W_{3} \cong \mathcal{C}^{(3)} \text { with } E \text { blown down to } e
$$

and e is a higher double point of W_{3}.

