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GT-VACHES, February 23, 2015

Smith (INRIA/LIX) Jacobians over C VACHES, 26/02/2015 1 / 21



What follows is a very quick jog through half of
Mumford’s “Curves and their Jacobians”, Chapter III.

Mumford begins:

I would like to being by introducing Jacobians in the way that
they were discovered historically. Unfortunately, my knowledge of
19th-century literature is very scant so this should not be taken
literally.

In my case, I need to add a further disclaimer:

Never mind the 19th century, I have a hard enough time with my
own century already... So none of this should be taken literally.
Or seriously, for that matter.
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Integration on C

Historically: long-dead folks studied algebraic integrals
I =

∫
f (x)dx , where F (x , y = f (x)) = 0.

So let’s look at integrals of rational differentials
on an algebraic curve C:

I (a) =

∫ a

a0

ω where ω =
P(x , y)

Q(x , y)
dx

with P , Q polynomials, a, a0 in C : F (x , y) = 0.
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Abel’s theorem

The main result is an addition theorem:
Let ω be a differential on C. There exists an integer g such that if

a0 is a base point and

a1, . . . , ag+1 are any points on C \ {poles of ω},
then we can determine {b1, . . . , bg} ⊂ C \ {poles of ω}
rationally in terms of the ai such that∫ a1

a0

ω + · · ·+
∫ ag+1

a0

ω =

∫ b1

a0

ω + · · ·+
∫ bg

a0

ω (mod periods of ω) .

Iterating, we get something that looks like a group law:(
g∑

i=1

∫ ai

a0

ω

)
+

(
g∑

i=1

∫ bi

a0

ω

)
=

(
g∑

i=1

∫ ci

a0

ω

)
(mod periods of ω) ,

where the ci can be expressed in terms of the ai and bi .
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Mumford’s rephrasing of Abel’s theorem

If ω is any rational differential on C, then the multi-valued function

a 7−→
∫ a

a0

ω

from C to C factors into a composition of three maps

C \ {poles of ω} φ−→ J
exp←− Lie(J) ∼= T0(J)

`−→ C ,

where

J is a commutative algebraic group,

` is linear, and

φ is a morphism. Further: if g = dim J , then extending to the
g -fold symmetric product using the addition law on J ,

φ(g) : (C \ {poles of ω})(g) −→ J is birational .
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Differentials on C and on JC

“A slightly less fancy way to put it”:

For each differential ω on C there is

a φ : C \ {poles of ω} → J , and

a translation-invariant differential η on J

such that φ∗η = ω.

Hence ∫ φ(a)

φ(a0)

η =

∫ a

a0

ω (mod periods) .
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Regular differentials

Now, we restrict all of this to regular differentials
(no poles: “differentials of the first kind”)...

If C/C is a nonsingular plane curve of genus g defined by

C : F (x , y) = 0 ,

then its regular differentials are

Ω1(C) =

〈
x i

Fy(x , y)
dx

〉g−1

i=0

where Fy := ∂F/∂y .

Ex: C : y 2 = x3 + ax + b has g = 1 and Ω1(C) = 〈dx/y〉.
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The Jacobian

“Among the ωs, the most important are those of the 1st kind, i.e.,
without poles, and if we integrate all of them at once, we are led to
the most important J of all: the Jacobian, which we call JC.”

C φ−→ JC
exp←− Lie(JC)

`−→ C ,

We find that

JC must be a compact commutative algebraic group
=⇒ JC is a complex torus

We have an isomorphism
φ∗ : {translation-invariant 1-forms on JC} → Ω1(C)

=⇒ dimJC = dim Ω1(C) = g(C).
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JC as a complex torus

We can write
JC = V /L

where

V = dual of Ω1(C) (a complex vector space)

L =
{
` ∈ V : `(ω) =

∫
γ
ω for some 1-cycle γ on C

}
(ie, the lattice of ` ∈ V that come from periods)

...And then the map φ : C → JC is

φ(a) =

∫ a

a0

ω (mod L)

(where we can fix a path from a0 to a.)

Since JC is a group: V ∗ ∼= {trans-inv. 1-forms on JC} ∼=
{cotangent space to JC at any a ∈ JC} ∼= Ω1(C).
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Algebraic construction of JC

We can also construct JC algebraically.

The Riemann–Roch theorem tells us that

l(D)− l(KC − D) = deg(D)− g + 1 ,

so we have a partial group law

C(g) × C(g) ⊃ U1 × U2 → U3 ⊂ C(g) with the Ui Zariski-open .

Weil showed that this can be extended into an algebraic group J
with J ⊃ U4 ⊂ C(g) for some Zariski-open U4.

(Remember, C (g) is birational to JC.)
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The Jacobian as the Albanese and Picard variety

The Jacobian JC is the Albanese variety of C:
that is, if A is an abelian variety,
then any morphism ψ : C → A factors through JC.

C −→ JC −→ A .

The Jacobian is also isomorphic to the Picard variety
Pic0(C) of C via the Abel–Jacobi theorem.

(Note: Pic0(X ) is the dual of Alb(X ).)

Smith (INRIA/LIX) Jacobians over C VACHES, 26/02/2015 11 / 21



Abel–Jacobi

Given x1, . . . , xk and y1, . . . , yk in C,

k∑
i=1

φ(xi) =
k∑

i=1

φ(yi) ⇐⇒
k∑

i=1

xi −
k∑

i=1

yi = (f ) for some f ∈ C(C) .

Consider the map φ(k) : C(k) → JC; we define subvarieties

Wk := Image(φ(k)) ⊆ JC for k ≥ 1

(so Wk = JC if k ≥ g(C)).

The most important of these is the Theta divisor

Wg−1 =: Θ .

Θ is ample; the functions in L(nΘ) map JC into Png−1.
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Fibres of φ(k)

Abel’s theorem =⇒ the fibres of φ(k) are linear systems of degree k ,
hence ∼= projective spaces:

Pick a degree-k effective divisor D ∈ C(k).
Riemann–Roch space L(D) := {f ∈ C(C) : (f ) + D ≥ 0}.
|D| := {(f ) + D : f ∈ L(D)} = (φ(k))−1(φ(k)(D)) ∼= P(L(D))
is the linear system of effective divisors linearly equivalent to D

Hence: if x = φ(k)(D), then (φ(k))−1(x) = |D| ∼= P(L(D)).
Riemann–Roch =⇒ dim |D| = k − g + dim Ω1(−D)

where Ω1(−D) = space of ω in Ω1(C) with zeroes on D.

Consequence:

φ(1)(C) = pt ⇐⇒ g(C) = 0 ⇐⇒ C ∼= P1

φ(1) is an embedding C ∼→ W1 ⊆ JC ⇐⇒ g(C) ≥ 1.
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Examples

Genus 0

If C has genus zero, then Ω1(C) = 0, so

JC = 0

...which fits with Riemann–Roch: JC ∼= Pic0(C) = 0.

Since JC = Alb(C) = 0, we find that for any curve X ,

The only linear subvarieties of JX are points
(lines L mapping into JX map through Alb(L) = 0).

More generally, there are no rational curves in any JX .
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Examples

Genus 1

If C has genus one, then φ : C → JC is an embedding, hence

JC ∼= C .

(The isomorphism depends on φ, ie on the choice of base point a0.)

In terms of the Picard group: the isomorphism C → JC ∼= Pic0(C)
is defined by a 7→ [a − a0], and [a − a0] + [b − b0] = [(a ⊕ b)− a0].∫ a

a0

dx/y +

∫ b

a0

dx/y =

∫ a

a0

dx/y +

∫ b⊕a

a0⊕a
dx/y =

∫ a⊕b

a0

dx/y (mod periods)

In this case, Θ = W0 = a0 (so a0 “is” the principal polarization).

Indeed, |3Θ| defines a projective embedding of JC into P2.
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Examples

Genus 2

Let C be a curve of genus 2, and consider

φ(2) : C(2) −→ JC .

The preimage of each point of JC is either a point or a line.

C : y 2 = f (x) has a hyperelliptic π : C 2→ P1 mapping (x , y) 7→ x .
All points of P1 are linearly equivalent =⇒ all of the π−1(x) are
linearly equivalent, so we get a copy of P1 in C(2):

E = {(x , y) + (x ,−y) : x ∈ P1} ⊂ C(2) .

Result: JC is obtained from C(2) by “blowing down” the divisor
E ∼= P1 to a single point.

In this case: Θ = φ(C) is a copy of C inside JC.
Smith (INRIA/LIX) Jacobians over C VACHES, 26/02/2015 16 / 21



Examples

Genus 3

Let C be a curve of genus 3.

First, consider k = 3:
φ(3) : C(3) → JC .

Fix x in C; the ω ∈ Ω1(C) zero at x form a 2-dimensional space.
These ω have 3 other zeroes → determine degree-3 effective divisors,
and these effective divisors are linearly equivalent (via f = ω1/ω2),
and hence form a linear system:

each x ∈ C ←→ a copy Ex of P1 in C(3) .

Now we get JC from C(3) by blowing down each Ex to a point.

On the other hand: if γ = {φ(3)(Ex) : x ∈ C} ⊂ JC,
then γ ∼= C, and C(3) = JC blown up along γ.
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Examples

Genus 3, continued

Next, consider k = 2 (still with g(C) = 3):

φ(2) : C(2) → W2 ⊂ JC .

If C is nonhyperelliptic then there are no nontrivial degree-2 linear
systems, so no preimages under φ(2) of dimension > 0, so

W2
∼= C(2) .

If C is hyperelliptic: one degree-2 linear system E
(from the hyperelliptic C → P1, like in g = 2), and so

Θ = W2
∼= C2 with E blown down to a point .

The image e = φ(2)(E ) of E in W2 is a double point.
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Examples

Genus 4 : Hyperelliptic case

Let C be a curve of genus 4.

First, if C is hyperelliptic:

∃ a degree-2 linear system E from the hyperelliptic π : C 2→ P1.

Hence for each x ∈ C we have a degree-3 linear system

P1 ∼= Ex = E + x ⊂ C3

—ie C(3) contains a whole curve of P1s.

Let S be the surface ∪x∈CEx ⊂ C(3). Then we have

Θ = W3
∼= C(3) with S blown down to a curve γ ∼= C ,

and γ is a double curve of W3.
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Examples

Genus 4 : Nonhyperelliptic general case

Suppose C is nonhyperelliptic of genus 4.
Then C is the intersection of a quadric F and a cubic G in P3.

General case: F ∼= P1 × P1.
=⇒ two projections πi : C → P1 of degree 3
=⇒ two linear systems E1,E2 ⊂ C(3), with E1

∼= E2
∼= P1.

Here:

Θ = W3
∼= C(3) with E1,E2 blown down to points e1, e2

and e1 and e2 are ordinary double points of W3.
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Examples

Genus 4 : Nonhyperelliptic general case

Suppose C is nonhyperelliptic of genus 4.
Then C is the intersection of a quadric F and a cubic G in P3.

Special case: F is a singular quadric. Then the two degree-3 maps
C → P1 coincide, so there is only one nontrivial degree-3 linear
system, E :

Θ = W3
∼= C(3) with E blown down to e

and e is a higher double point of W3.
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