Jacobians over $\ensuremath{\mathbb{C}}$

Benjamin Smith

Team **GRACE**

INRIA Saclay–Île-de-France Laboratoire d'Informatique de l'École polytechnique (LIX)

GT-VACHES, February 23, 2015

What follows is a very quick jog through half of Mumford's "Curves and their Jacobians", Chapter III.

Mumford begins:

I would like to being by introducing Jacobians in the way that they were discovered historically. Unfortunately, my knowledge of 19th-century literature is very scant so this should not be taken literally.

In my case, I need to add a further disclaimer:

Never mind the 19th century, I have a hard enough time with my own century already... So none of this should be taken literally. Or seriously, for that matter.

- Historically: long-dead folks studied algebraic integrals $I = \int f(x) dx$, where F(x, y = f(x)) = 0.
- So let's look at integrals of rational differentials on an algebraic curve C:

$$I(a) = \int_{a_0}^{a} \omega$$
 where $\omega = \frac{P(x, y)}{Q(x, y)} dx$

with P, Q polynomials, a, a_0 in C : F(x, y) = 0.

Abel's theorem

The main result is an addition theorem:

Let ω be a differential on C. There exists an integer g such that if

- *a*₀ is a base point and
- a_1, \ldots, a_{g+1} are any points on $\mathcal{C} \setminus \{ \text{poles of } \omega \}$,
- then we can determine $\{b_1, \ldots, b_g\} \subset C \setminus \{\text{poles of } \omega\}$ rationally in terms of the a_i such that

$$\int_{a_0}^{a_1} \omega + \dots + \int_{a_0}^{a_{g+1}} \omega = \int_{a_0}^{b_1} \omega + \dots + \int_{a_0}^{b_g} \omega \pmod{\text{periods of } \omega} .$$

Iterating, we get something that looks like a group law:

$$\left(\sum_{i=1}^{g} \int_{a_0}^{a_i} \omega\right) + \left(\sum_{i=1}^{g} \int_{a_0}^{b_i} \omega\right) = \left(\sum_{i=1}^{g} \int_{a_0}^{c_i} \omega\right) \pmod{\text{periods of } \omega},$$

where the c_i can be expressed in terms of the a_i and b_i .

Smith (INRIA/LIX)

Mumford's rephrasing of Abel's theorem

If ω is any rational differential on $\mathcal C$, then the multi-valued function

$$a\longmapsto \int_{a_0}^a\omega$$

from ${\mathcal C}$ to ${\mathbb C}$ factors into a composition of three maps

$$\mathcal{C}\setminus \{ ext{poles of }\omega\} \stackrel{\phi}{\longrightarrow} J \stackrel{ ext{exp}}{\longleftarrow} \operatorname{Lie}(J) \cong \mathcal{T}_0(J) \stackrel{\ell}{\longrightarrow} \mathbb{C} \;,$$

where

- J is a commutative algebraic group,
- ℓ is linear, and
- ϕ is a morphism. Further: if $g = \dim J$, then extending to the g-fold symmetric product using the addition law on J,

$$\phi^{(g)}: (\mathcal{C} \setminus \{ \text{poles of } \omega \})^{(g)} \longrightarrow J \text{ is birational }.$$

Differentials on ${\mathcal C}$ and on ${\mathcal J}_{\mathcal C}$

For each differential ω on ${\mathcal C}$ there is

- a $\phi : \mathcal{C} \setminus \{ \text{poles of } \omega \} \rightarrow J$, and
- a translation-invariant differential η on J such that $\phi^*\eta = \omega$.

Hence

$$\int_{\phi(a_0)}^{\phi(a)}\eta=\int_{a_0}^a\omega\quad ({
m mod \ periods}) \;.$$

Now, we restrict all of this to regular differentials (no poles: "differentials of the first kind")...

If \mathcal{C}/\mathbb{C} is a nonsingular plane curve of genus g defined by

$$\mathcal{C}:F(x,y)=0$$

then its regular differentials are

$$\Omega^1(\mathcal{C}) = \left\langle \frac{x^i}{F_y(x,y)} dx \right\rangle_{i=0}^{g-1}$$
 where $F_y := \partial F / \partial y$.

Ex: $\mathcal{C}: y^2 = x^3 + ax + b$ has g = 1 and $\Omega^1(\mathcal{C}) = \langle dx/y \rangle$.

The Jacobian

"Among the ω s, the most important are those of the 1st kind, i.e., without poles, and if we integrate all of them at once, we are led to the most important J of all: the Jacobian, which we call $\mathcal{J}_{\mathcal{C}}$."

$$\mathcal{C} \stackrel{\phi}{\longrightarrow} \mathcal{J}_{\mathcal{C}} \stackrel{\text{exp}}{\longleftarrow} \operatorname{Lie}(\mathcal{J}_{\mathcal{C}}) \stackrel{\ell}{\longrightarrow} \mathbb{C}$$
,

We find that

- $\mathcal{J}_{\mathcal{C}}$ must be a *compact* commutative algebraic group $\implies \mathcal{J}_{\mathcal{C}}$ is a complex torus
- We have an isomorphism

 ϕ^* : {translation-invariant 1-forms on $\mathcal{J}_{\mathcal{C}}$ } $\rightarrow \Omega^1(\mathcal{C})$

•
$$\implies$$
 dim $\mathcal{J}_{\mathcal{C}} = \dim \Omega^1(\mathcal{C}) = g(\mathcal{C}).$

$\mathcal{J}_{\mathcal{C}}$ as a complex torus

We can write

$$\mathcal{J}_{\mathcal{C}} = V/L$$

where

. .

$$\phi(a) = \int_{a_0}^a \omega \pmod{L}$$

(where we can fix a path from a_0 to a.)

Since $\mathcal{J}_{\mathcal{C}}$ is a group: $V^* \cong \{\text{trans-inv. 1-forms on } \mathcal{J}_{\mathcal{C}}\} \cong \{\text{cotangent space to } \mathcal{J}_{\mathcal{C}} \text{ at any } a \in \mathcal{J}_{\mathcal{C}}\} \cong \Omega^1(\mathcal{C}).$

Smith (INRIA/LIX)

Algebraic construction of $\mathcal{J}_{\mathcal{C}}$

We can also construct $\mathcal{J}_{\mathcal{C}}$ algebraically.

The Riemann-Roch theorem tells us that

$$I(D) - I(K_{\mathcal{C}} - D) = \deg(D) - g + 1 ,$$

so we have a partial group law

 $\mathcal{C}^{(g)}\times\mathcal{C}^{(g)}\supset U_1\times U_2\to U_3\subset\mathcal{C}^{(g)}\quad\text{ with the }U_i\text{ Zariski-open }.$

Weil showed that this can be extended into an algebraic group J with $J \supset U_4 \subset C^{(g)}$ for some Zariski-open U_4 .

(Remember, $C^{(g)}$ is birational to $\mathcal{J}_{\mathcal{C}}$.)

The Jacobian $\mathcal{J}_{\mathcal{C}}$ is the *Albanese variety* of \mathcal{C} : that is, if A is an abelian variety, then any morphism $\psi : \mathcal{C} \to A$ factors through $\mathcal{J}_{\mathcal{C}}$.

$$\mathcal{C} \longrightarrow \mathcal{J}_{\mathcal{C}} \longrightarrow A$$
 .

The Jacobian is also isomorphic to the Picard variety $\operatorname{Pic}^{0}(\mathcal{C})$ of \mathcal{C} via the Abel–Jacobi theorem. (Note: $\operatorname{Pic}^{0}(\mathcal{X})$ is the dual of $\operatorname{Alb}(\mathcal{X})$.)

Abel–Jacobi

Given x_1, \ldots, x_k and y_1, \ldots, y_k in C,

$$\sum_{i=1}^k \phi(x_i) = \sum_{i=1}^k \phi(y_i) \iff \sum_{i=1}^k x_i - \sum_{i=1}^k y_i = (f) \text{ for some } f \in \mathbb{C}(\mathcal{C}) \ .$$

Consider the map $\phi^{(k)}: \mathcal{C}^{(k)} \to \mathcal{J}_{\mathcal{C}}$; we define subvarieties

$$W_k := \operatorname{Image}(\phi^{(k)}) \subseteq \mathcal{J}_{\mathcal{C}}$$
 for $k \ge 1$

(so $W_k = \mathcal{J}_{\mathcal{C}}$ if $k \geq g(\mathcal{C})$).

The most important of these is the Theta divisor

$$W_{g-1} =: \Theta$$

 Θ is ample; the functions in $L(n\Theta)$ map $\mathcal{J}_{\mathcal{C}}$ into \mathbb{P}^{n^g-1} .

Fibres of $\phi^{(k)}$

Abel's theorem \implies the fibres of $\phi^{(k)}$ are *linear systems of degree k*, hence \cong projective spaces:

- Pick a degree-k effective divisor $D \in C^{(k)}$.
- Riemann-Roch space $L(D) := \{f \in \mathbb{C}(\mathcal{C}) : (f) + D \ge 0\}.$
- $|D| := \{(f) + D : f \in L(D)\} = (\phi^{(k)})^{-1}(\phi^{(k)}(D)) \cong \mathbb{P}(L(D))$ is the linear system of effective divisors linearly equivalent to DHence: if $x = \phi^{(k)}(D)$, then $(\phi^{(k)})^{-1}(x) = |D| \cong \mathbb{P}(L(D))$.
- Riemann-Roch \implies dim $|D| = k g + \dim \Omega^{1}(-D)$

where $\Omega^1(-D) =$ space of ω in $\Omega^1(\mathcal{C})$ with zeroes on D.

Consequence:

•
$$\phi^{(1)}(\mathcal{C}) = \mathsf{pt} \iff g(\mathcal{C}) = \mathsf{0} \iff \mathcal{C} \cong \mathbb{P}^1$$

• $\phi^{(1)}$ is an embedding $\mathcal{C} \xrightarrow{\sim} W_1 \subseteq \mathcal{J}_{\mathcal{C}} \iff g(\mathcal{C}) \geq 1.$

If ${\mathcal C}$ has genus zero, then $\Omega^1({\mathcal C})=0$, so

$$\mathcal{J}_{\mathcal{C}} = 0$$

...which fits with Riemann–Roch: $\mathcal{J}_{\mathcal{C}} \cong \operatorname{Pic}^{0}(\mathcal{C}) = 0$.

Since $\mathcal{J}_{\mathcal{C}} = \operatorname{Alb}(\mathcal{C}) = 0$, we find that for any curve \mathcal{X} ,

- The only linear subvarieties of $\mathcal{J}_{\mathcal{X}}$ are points (lines *L* mapping into $\mathcal{J}_{\mathcal{X}}$ map through Alb(L) = 0).
- More generally, there are no rational curves in any $\mathcal{J}_{\mathcal{X}}$.

If ${\mathcal C}$ has genus one, then $\phi:{\mathcal C}\to {\mathcal J}_{\mathcal C}$ is an embedding, hence

$$\mathcal{J}_{\mathcal{C}}\cong \mathcal{C}$$
 .

(The isomorphism depends on ϕ , ie on the choice of base point a_0 .)

In terms of the Picard group: the isomorphism $\mathcal{C} \to \mathcal{J}_{\mathcal{C}} \cong \operatorname{Pic}^{0}(\mathcal{C})$ is defined by $a \mapsto [a - a_{0}]$, and $[a - a_{0}] + [b - b_{0}] = [(a \oplus b) - a_{0}]$.

$$\int_{a_0}^{a} dx/y + \int_{a_0}^{b} dx/y = \int_{a_0}^{a} dx/y + \int_{a_0 \oplus a}^{b \oplus a} dx/y = \int_{a_0}^{a \oplus b} dx/y \pmod{\text{periods}}$$

In this case, $\Theta = W_0 = a_0$ (so a_0 "is" the principal polarization). Indeed, $|3\Theta|$ defines a projective embedding of $\mathcal{J}_{\mathcal{C}}$ into \mathbb{P}^2 .

Let ${\mathcal C}$ be a curve of genus 2, and consider

$$\phi^{(2)}: \mathcal{C}^{(2)} \longrightarrow \mathcal{J}_{\mathcal{C}}$$
 .

The preimage of each point of $\mathcal{J}_{\mathcal{C}}$ is either a point or a line.

 $C: y^2 = f(x)$ has a hyperelliptic $\pi: C \xrightarrow{2} \mathbb{P}^1$ mapping $(x, y) \mapsto x$. All points of \mathbb{P}^1 are linearly equivalent \implies all of the $\pi^{-1}(x)$ are linearly equivalent, so we get a copy of \mathbb{P}^1 in $C^{(2)}$:

$$E=\{(x,y)+(x,-y):x\in \mathbb{P}^1\}\subset \mathcal{C}^{(2)}$$

Result: $\mathcal{J}_{\mathcal{C}}$ is obtained from $\mathcal{C}^{(2)}$ by "blowing down" the divisor $E \cong \mathbb{P}^1$ to a single point.

In this case: $\Theta = \phi(\mathcal{C})$ is a copy of \mathcal{C} inside $\mathcal{J}_{\mathcal{C}}$.

Let \mathcal{C} be a curve of genus 3.

First, consider k = 3:

$$\phi^{(3)}: \mathcal{C}^{(3)} \to \mathcal{J}_{\mathcal{C}}$$
.

Fix x in C; the $\omega \in \Omega^1(C)$ zero at x form a 2-dimensional space. These ω have 3 other zeroes \rightarrow determine degree-3 effective divisors, and these effective divisors are linearly equivalent (via $f = \omega_1/\omega_2$), and hence form a linear system:

each
$$x \in \mathcal{C} \longleftrightarrow$$
 a copy E_x of \mathbb{P}^1 in $\mathcal{C}^{(3)}$

Now we get $\mathcal{J}_{\mathcal{C}}$ from $\mathcal{C}^{(3)}$ by blowing down each E_x to a point.

On the other hand: if $\gamma = \{\phi^{(3)}(E_x) : x \in \mathcal{C}\} \subset \mathcal{J}_{\mathcal{C}}$, then $\gamma \cong \mathcal{C}$, and $\mathcal{C}^{(3)} = \mathcal{J}_{\mathcal{C}}$ blown up along γ .

Genus 3, continued

Next, consider k = 2 (still with g(C) = 3):

$$\phi^{(2)}: \mathcal{C}^{(2)} \to W_2 \subset \mathcal{J}_{\mathcal{C}}$$
.

If C is *nonhyperelliptic* then there are no nontrivial degree-2 linear systems, so no preimages under $\phi^{(2)}$ of dimension > 0, so

$$W_2 \cong \mathcal{C}^{(2)}$$

If C is *hyperelliptic*: one degree-2 linear system E (from the hyperelliptic $C \to \mathbb{P}^1$, like in g = 2), and so

 $\Theta = W_2 \cong \mathcal{C}^2$ with E blown down to a point .

The image $e = \phi^{(2)}(E)$ of E in W_2 is a double point.

Genus 4 : Hyperelliptic case

Let \mathcal{C} be a curve of genus 4.

First, if C is hyperelliptic:

 \exists a degree-2 linear system *E* from the hyperelliptic $\pi : \mathcal{C} \xrightarrow{2} \mathbb{P}^1$.

Hence for each $x \in \mathcal{C}$ we have a degree-3 linear system

$$\mathbb{P}^1 \cong E_x = E + x \subset \mathcal{C}^3$$

—ie $\mathcal{C}^{(3)}$ contains a whole curve of \mathbb{P}^1 s.

Let *S* be the surface $\cup_{x \in C} E_x \subset C^{(3)}$. Then we have

 $\Theta = W_3 \cong \mathcal{C}^{(3)}$ with S blown down to a curve $\gamma \cong \mathcal{C}$,

and γ is a double curve of W_3 .

Genus 4 : Nonhyperelliptic general case

Suppose C is nonhyperelliptic of genus 4. Then C is the intersection of a quadric F and a cubic G in \mathbb{P}^3 .

General case: $F \cong \mathbb{P}^1 \times \mathbb{P}^1$.

- \implies two projections $\pi_i : \mathcal{C} \to \mathbb{P}^1$ of degree 3
- \implies two linear systems $E_1, E_2 \subset C^{(3)}$, with $E_1 \cong E_2 \cong \mathbb{P}^1$.

Here:

 $\Theta = W_3 \cong \mathcal{C}^{(3)}$ with E_1, E_2 blown down to points e_1, e_2

and e_1 and e_2 are ordinary double points of W_3 .

Genus 4 : Nonhyperelliptic general case

Suppose C is nonhyperelliptic of genus 4. Then C is the intersection of a quadric F and a cubic G in \mathbb{P}^3 .

Special case: F is a singular quadric. Then the two degree-3 maps $\mathcal{C} \to \mathbb{P}^1$ coincide, so there is only one nontrivial degree-3 linear system, E:

 $\Theta = W_3 \cong \mathcal{C}^{(3)}$ with *E* blown down to *e*

and e is a higher double point of W_3 .